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Abstract. While software architecture performance analysis is a well-
studied field, it is less understood how the analysis results (i.e., mean
values, variances, and/or probability distributions) trace back to the
architectural model elements (i.e., software components, interactions
among components, deployment nodes). Yet, understanding this trace-
ability is critical for understanding the analysis result in context of
the architecture. The goal of this paper is to automate the traceability
between software architectural models and performance analysis results
by investigating the uncertainty while bridging these two domains. Our
approach makes use of performance antipatterns to deduce the logical
consequences between the architectural elements and analysis results and
automatically build a graph of traces to identify the most critical causes
of performance flaws. We developed a tool that jointly considers SOft-
ware and PErformance concepts (SoPeTraceAnalyzer), and it automati-
cally builds model-to-results traceability links. The benefit of the tool is
illustrated by means of a case study in the e-health domain.

Keywords: Traceability · Uncertainty · Software modelling · Perfor-
mance analysis

1 Introduction

In the software development domain there is a very high interest in the early vali-
dation of performance requirements because this ability avoids late and expensive
repairs to consolidated software artifacts [1]. One of the proper ways to manage
software performance is to systematically predict the performance of the soft-
ware system throughout the development process. It is thus possible to make
informed choices among architectural and design alternatives; and knowing in
advance if the software will meet its performance objectives [2].

Advanced Model-Driven Engineering (MDE) techniques have successfully
been used in the last few years to introduce automation in software perfor-
mance modeling and analysis [3]. Nevertheless, the problem of interpreting the
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performance analysis results is still quite critical. A large gap exists between
the representation of performance analysis results and the software architectural
model provided by the engineers. In fact, the former usually contains numbers
(e.g., mean response time, throughput variance, etc.), whereas the latter embeds
architectural choices (e.g., software components, interaction among components,
deployment nodes). Today, such activities are exclusively based on the analysts’
experience and therefore their effectiveness often suffers from lack of automation.

In [4] we proposed a language capable of capturing model-to-code trace-
ability while considering typical uncertainties in its domain. For example, the
engineer knows that some given piece of code may implement an architectural
element; however, not whether this piece of code also implements other architec-
tural elements; or whether other pieces of code also implement this architectural
element. This paper adapts this language to provide model-to-results traceabil-
ity links while considering typical uncertainties from the performance analysis
domain. We presume that engineers know when a given performance result is
affected by an architectural element. However, they may not know whether this
performance result is also affected by other architectural elements or whether
other performance results are also affected by this architectural element.

The knowledge of the engineer is interwoven with software performance
antipatterns [5] that represent bad practices in architectural models negatively
affecting performance indices. A performance antipattern definition includes the
description of a bad practice occurring in the architectural model (e.g., a soft-
ware component sending an excessive number of messages), along with the solu-
tion that can be applied to avoid negative consequences (e.g., high network
utilization). In previous work [6] we provided a more formal representation of
performance antipatterns by introducing first-order logic rules that express a
set of system properties under which an antipattern occurs. The benefit of this
representation is that it already includes architectural elements (e.g., software
components) and performance results (e.g., utilization) hence it can be used to
make the knowledge of engineers less uncertain.

The contribution of this paper is to provide support in the process of identify-
ing the architectural model elements that most likely contribute to the violation
of performance requirements by jointly considering knowledge from engineers
and performance antipatterns. To this end, we developed a tool, namely SoPe-
TraceAnalyzer [7], that jointly considers SOftware and PErformance concepts:
it takes as input a set of statements specifying the relationships between soft-
ware elements and performance results, and provides as output model-to-results
traceability links. The language defined in [4] is extended by adding a weight-
ing methodology that quantifies the performance requirements’ violation, thus
to highlight the criticality of model elements despite performance results. The
key feature of our tool is that the knowledge of performance antipatterns can be
embedded in the specification of uncertainties to deduce the logical consequences
between architectural elements and analysis results, thus to disambiguate the
limited knowledge of engineers.
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The paper is organized as follows: Section 2 presents related work; Section 3
describes our approach; Section 4 illustrates the case study; Section 5 discusses
the threats to validity of the approach; Section 6 concludes the paper and outlines
future research directions.

2 Related Work

The work presented in this paper relates to two main research areas and builds
upon our previous results in these areas: (i) software performance engineering
(SPE), and (ii) model-driven traceability.

Software performance engineering. SPE represents the entire collection of
software engineering activities and related analyses used throughout the soft-
ware development cycle, which are directed to meeting performance require-
ments [8]. Performance antipatterns [5] are very complex (as compared to other
software patterns) because they are founded on different characteristics of soft-
ware systems, spanning from static through behavioral to deployment. Antipat-
terns include features related to architectural model elements (e.g., many usage
dependencies, excessive message traffic) as well as to performance results (e.g.,
high, low utilization). Our logic-based formalization [6] has been experimented
to benefit across different modelling languages [9–11].

Model-driven traceability. In [4] we introduced a language for expressing
uncertainties in traceability relationships between models and code, which is
the main benefit of this technique compared with other traceability approaches.
There are many other techniques exploiting the automatic recovery of different
types of trace links [12] [13] [14]. Our work [4] out-passes these techniques by
introducing a flexible methodology to express uncertainties. We proved in our
recent work [15] that the same uncertainty expressions could be applied to trace
arbitrary kinds of software artifacts.

In literature there are some approaches that work towards the specification
of traceability links between model elements and performance results.

In [16] a mechanism to annotate performance analysis results back into the
original performance models (provided by the domain experts) is presented. On
the contrary, our approach includes the software models for traceability, and
it supports the interpretation of analysis results by providing weights on the
basis of requirements’ violation. In [17] traceability links are maintained between
performance requirements and Use Case Map (UCM) scenarios, however these
links are used to build Layered Queueing Network (LQN) models only. In [18]
traceability links are used to propagate the results of the performance model back
to the original software model, however it applies to UML and LQN models only.
Our approach instead aims to automatically build model-to-results traceability
links to point out the architectural elements affecting the stated requirements.

The problem of dealing with uncertainty in early requirements and archi-
tectural decisions has been recognized by several works in literature. In [19]
a language (i.e., RELAX) has been proposed to explicitly address uncertainty
for specifying the behaviour of dynamically adaptive systems. In [20] a tool
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(i.e., GuideArch) has been presented to guide the exploration of the architec-
tural solution space under uncertainty. In [21] a tool (i.e., Moda) has been intro-
duced for multi-objective decision analysis by means of Monte-Carlo simulation
and Pareto-based optimisation methods. However, all these works [19–21] do
not explicitly consider performance analysis results and their traceability with
software architectural elements.

3 Our Approach

Figure 1 illustrates the process we envisage to automate the traceability between
architectural model elements and performance analysis results. Ovals in the
figure represent operational steps whereas square boxes represent input/output
data. Dashed vertical lines divide the process in four different phases.

Fig. 1. Deriving automatically model-to-results traceability links by means of perfor-
mance antipatterns.

We assume that a set of performance requirements, among others, is defined.
Some examples of performance requirements are as follows: the response time
of a service has to be less than 3 seconds, the throughput of a service has to
be greater than 10 requests/second, the utilisation of a hardware device shall
not be higher than 80%, etc. Performance requirements will be used to interpret
the results from the model-based performance analysis. In the modelling phase,
an annotated1 software architectural model is built. In the analysis phase, a
performance model is obtained through model transformation, and such model
is solved to obtain the performance results of interest.

The focus of this paper is on the interpretation phase where the performance
results must be interpreted in order to detect, if any, performance flaws2 and
1 Annotations are aimed at specifying information to execute performance analysis

such as the incoming workload, service demands, hardware characteristics, etc.
2 A performance flaw originates from a set of unfulfilled requirement(s), such as “the

estimated average response time of a service is higher than the required one”.
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highlight the software architectural model elements responsible for that bad
values. In fact, in case of unsatisfactory results a set of architectural refactoring
actions can be introduced to generate new software architectural models3 that
undergo the same process shown in Figure 1.

The goal of our approach is to trace model elements vs analysis results, see
shaded boxes of Figure 1. It starts with an automatic trace generation oper-
ational step that provides as output a weighted footprint graph (from input),
i.e., a graph containing a node for every result element (called RE nodes) and a
node for each model element (called ME nodes). The connections between these
nodes describe the certainties of the input (trace or no-trace), and are refined
with an automatic uncertainty reduction operational step aimed at generating
a weighted foot print graph (after antipattern-based rules). This latter step is
supported by performance antipatterns [5] that are suitable to deduce the logi-
cal consequences of the uncertainties, and contribute to automatically generate
traces joining architectural elements and performance results.

3.1 Automatic Trace Generation

The automatic trace generation operational step (see Figure 1) takes as input:
(i) performance requirements, (ii) annotated software architectural model, and
(iii) performance results. It provides as output a weighted footprint graph.

Performance requirements are classified on the basis of the performance
indices they address and the level of abstraction they apply. Here we consider
the requirements that refer to the following performance indices [23]: Response
time (RT) is defined as the time interval between a user request of a service
and the response of the system; Throughput (TH) is defined as the rate at which
requests can be handled by a system, and is measured in requests per unit of
time; Utilization (U) is defined as the ratio of busy time of a resource and the
total elapsed time of the measurement period; Queue length (QL) is defined as
the number of users waiting for a resource; Waiting time (WT) is defined as the
time interval required to access to a resource starting from when the resource is
required up to when it is accessed.

Usually, RT requirements are upper bounds defined in “business” require-
ments by the end users of the system. TH requirements can be both “business”
and “system” requirements, they can represent either an upper or a lower bound.
U, QL and WT requirements are upper bounds defined in “system” requirements
by system engineers on the basis of their experience, scalability issues, or con-
straints from other concurrent software systems.

Various levels of abstraction can be defined for a requirement: system, pro-
cessor, etc. However, we do not consider all possible combinations of indices and
levels of abstraction, we focus on the most common ones that are: RT and TH of
services, U, QL, and WT of hardware devices.

3 We do not detail the refactoring process here, as it is out of this paper focus. However,
readers interested to this part can refer to [22].
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Performance results represent the analysis values of the indices we consider
for traceability. Note that such values are affected by a set of features such as
system workload and operation profile that represent how the software system
is used [23].

Annotated software architectural models may be constituted by elements
belonging to different views [24]: Static/Software View (SW) includes the soft-
ware elements, e.g., operations (SWop), components (SWcomp), services, and the
static relationships among them; Dynamic/Interaction View (DY) includes the
specification of the interaction, e.g., messages (DYmsg), that occurs between the
software components to provide services; Deployment/Hardware View (HW)
includes the hardware devices, e.g., processing nodes (HWnode), and communica-
tion networks (HWnet), and the mapping of software components and iteractions
onto hardware devices. Summarizing, SWop, SWcomp, DYmsg, HWnode, and HWnet
represent the architectural elements we consider for traceability.

Language for Expressing Traceability. This paper adapts the language for
model-to-code traceability introduced in [4] and extends it to express model-to-
results traceability considering some of the unique aspects of this domain. The
main benefit of our approach is that our language allows the engineer to express
uncertainty constructs to the level of detail she or he is comfortable with.

Each construct is defined as {m*} relationship {r*} where {m*} is the set
of model elements and {r*} is the set of results elements. The star symbol (*)
expresses multiplicity in that m* stands for multiple model elements and r* for
multiple results elements. The relationship term declares how the first set is
related to the second one.

We distinguish between three major relationships: affectAtLeast, affectAt-
Most, affectExactly.

1) AffectAtLeast Construct : the input {m*} affectAtLeast {r*} defines that
the model elements in {m*} affect all of the result elements in {r*} and possibly
more. This input has a correctness constraint ensuring that every model element
in {m*} individually must be affecting a subset of {r*}. One example of this
relationship is provided by the software components SWcomp and the subset of
operations SWop involved in a service S that affect at least the response time
(RT) and the throughput (TH) of the service S.
Input: {SWop*, SWcomp*} affectAtLeast {RT, TH}

2) AffectAtMost Construct : the input {m*} affectAtMost {r*} defines that
the model elements in {m*} affect some of the result elements in {r*} but cer-
tainly not more. This input expresses the certainty that every other model ele-
ment not in {m*} must not affect any result element in {r*}. One example of
this relationship is provided by the software components SWcomp and the sub-
set of operations SWop involved in a service S as well as the deployment nodes
HWnode where the SWcomp components are deployed that affect at most the
response time (RT) and the throughput (TH) of the service S.
Input: {SWop*, SWcomp*, HWnode*} affectAtMost {RT, TH}

3) AffectExactly Construct : the input {m*} affectExactly {r*} defines that
every model element in {m*} affects one or more result elements in {r*} and
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that the results elements in {r*} are not affected in any other model element
not in {m*}. This input defines no-trace between each result element in {r*}
and each model element in the remaining M-{m*} (where M is the set of all
input model elements), since each model element in {m*} affects only a subset
of {r*}. However, this does not mean that these result elements could not be
affected by other model elements in M-{m*}. One example of this relationship is
provided by an hardware device HWnode and the performed operations SWop
that affect exactly its utilization (U).
Input: {SWop*, HWnode} affectExactly {U}

Weighted Footprint Graph. The language we provided to express the uncer-
tainty constructs between a set of architectural model elements and a set of
analysis results elements is very flexible. Listing 1.1 reports one abstract exam-
ple for the specification of the input. For example, the hardware devices HWnode
and HWnet affect exactly the performance indices related to them, i.e., utiliza-
tion (U), queue length (QL), and waiting time (WT). As another example, the
software components SWcomp and the subset of operations SWop involved in
a service S affect at least the response time (RT) and the throughput (TH) of
the service S.

{HWnode, HWnet} affectExactly {U, QL, WT} ;
{SWop, SWcomp} affectAtLeast {RT, TH} ;
{SWop, DYmsg} affectAtMost {RT, TH, QL} ;
{SWcomp, DYmsg} affectAtMost {RT, TH, QL} ;

Listing 1.1. Input to trace generation.

The goal of our SoPeTraceAnalyzer tool [7] is to interpret these traceability
expressions and automatically build (certainties and uncertainties) in a graph
structure, which we call the weighted footprint graph (from input).

Figure 2 reports one abstract example of this graph and it refers to the input
specified in Listing 1.1. The graph contains a node for every result element
(called RE nodes) and a node for each model element (called ME nodes). RE
nodes are: response time (RT), throughput (TH), utilization (U), queue length
(QL), and waiting time (WT). ME nodes are: software operations (SWop), software
components (SWcomp), dynamic interactions (DYmsg), hardware nodes (HWnode),
and communication networks (HWnet).

The connections between RE nodes and ME nodes describe the certainties of
the input (trace or no-trace) which are generated out of the logical consequences
of the uncertainties. A trace (m, r) is depicted by a bold line between the ME
node of m and the RE node of r. In Figure 2 no such lines are depicted because
the logical interpretation of the input did not yield any traces. On the contrary,
no-traces are depicted by dashed lines. Furthermore, the graph contains nodes to
capture model element groups (MEG nodes) and results element groups (REG
nodes). These two kinds of nodes describe the uncertainties of the input.

Note that each result element node RE has a weight (ω) that represents
a value indicating how much the requirement is far from the analysed index,
whereas each model element node ME has a weight that is a function (

∑
F(ω))
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Fig. 2. Weighted Footprint Graph (from Input).

indicating how much the architectural element is critical for the violated require-
ments. Different heuristics (ω) and functions (

∑
F(ω)) can be used to weight

RE and ME nodes in footprint graphs. Furthermore, the human intervention
of engineers may help to add priorities to performance results and to specify
legacy constraints for architectural elements. We provide preliminary heuristics
in Section 4, and we intend to further investigate this aspect in the near future.

3.2 Automatic Uncertainty Reduction

The weighted footprint graph is the foundation for automatic trace generation,
and several propagation rules can be introduced to reduce the initial uncertainty.
Our approach makes use of performance antipatterns [5] to deduce the logical
consequences between architectural elements and analysis results.

In our previous work [6] we provided a logic-based representation of per-
formance antipatterns that supports the specification of further input to trace
generation. Listing 1.2 reports the traceability rules while considering the spec-
ification of some performance antipatterns, i.e., Concurrent Processing Systems
(CPS), Pipe & Filter (P&F), God Class/Component (BLOB), Extensive Pro-
cessing (EP), Empty Semi Trucks (EST), One-Lane Bridge (OLB), and The
Ramp (TR), respectively.

CPS: {HWnode} affectExactly {QL, U} ;
BLOB: {SWop, DYmsg} affectAtLeast {U} ;
P&F: {SWop, DYmsg} affectAtLeast {TH, U} ;
EP: {SWop, DYmsg} affectAtLeast {RT, U} ;
EST: {DYmsg} affectAtLeast {RT, U} ;
OLB: {SWcomp, SWop, DYmsg} affectAtMost {RT, WT} ;
TR: {SWop} affectExactly {RT, TH} ;

Listing 1.2. Antipattern-based rules to reduce model-to-results uncertainty.
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Fig. 3. Weighted Footprint Graph (after Antipattern-based Rules).

For example, detecting a CPS antipattern indicates that HWnode affects
exactly QL and U. This rule comes from the logic-based formula of the CPS
antipattern that has been defined in [6], and an excerpt is reported in Equation
(1) where P represents the set of all the hardware devices. CPS is an antipat-
tern that occurs when processes cannot make effective use of available hard-
ware devices to a non-balanced assignment of tasks. The over-utilized hardware
devices are detected by checking if the queue length and the utilization overcome
pre-defined thresholds4.

∃Px ∈ P | FmaxQL(Px) ≥ ThmaxQL∧
FmaxHwUtil(Px) ≥ ThmaxUtil

(1)

Figure 3 reports the weighted footprint graph (after introducing antipattern-
based rules) and, for figure readibility, it is built considering CPS and TR rules
only (see Listing 1.2). The inclusion of these two antipatterns generates five
additional traces (bold lines) and two no-traces (dashed lines) between MEs and
REs. Note that the specification of antipattern-based rules may also contribute
to increase the overall uncertainty of the system since no logical consequences
can be deduced while considering the addition of further constructs.

4 Illustrative Example

The proposed approach is illustrated on a case study in the e-health domain.
Figure 4 depicts an excerpt of the E-Health System (EHS) software architectural
4 A specific characteristic of performance antipatterns is that they contain numeri-

cal parameters representing thresholds (e.g., high utilization, excessive number of
messages). For further details refer to [6].
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model. The system supports the doctors’ everyday activities, such as the retrieval
of information of their patients. On the basis of such data doctors may send an
alarm in case of warning conditions. Patients are allowed to retrieve information
about the doctor expertise and update some vital parameters (e.g., heart rate)
to monitor their health status.

The Component

(a) Component Diagram.

(b) Deployment Diagram.

Fig. 4. EHS- Software Architectural Model.

Diagram shown in
Figure 4(a) describes
the software compo-
nents: PatientApp
and DoctorApp
components are con-
nected to the Dis-
patcher component
that forwards users’
requests to the DB-
data component and/
or retrieves images
from the DB-images
component. The
Deployment Diagram
depicted in Figure
4(b) shows that both
the doctor’s and the
patient’s applications
have been deployed
on a Personal Digi-
tal Assistant (PDA),
i.e., a mobile device.

Hardware devices communicate through different networks, i.e., wide and local
area networks.
The system workload has been defined as follows: (i) a closed workload is defined
for the getPatientInfo service, with a population of 50 doctors and an average
thinking time of 5 minutes; (ii) a closed workload is defined for the updateVital-
Parameters service, with a population of 2500 patients and an average thinking
time of 1 hour.

The performance requirements that we consider, under the stated workload
of 2550 users (i.e., 50 doctors and 2500 patients), are:

RT : The average response time of the UpdateVitalParameters service has to
be less than 60 sec;

TH: The throughput of the UpdateVitalParameters service has to be greater
than 4 requests/sec;

U : The utilization of the hardware devices has to be lower than 70%.
The performance analysis has been conducted by transforming the software

architectural model into a Queueing Network (QN) performance model [25] and
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by solving the latter with two well-assessed techniques [23], i.e., mean value
analysis (MVA) and simulation. Both solution techniques are supported by Java
Modeling Tools (JMT) [26]. Table 1 shows the resulting performance results for
the EHS software architectural model. In particular, the average response time
(RT ) and throughput (TH ) for the UpdateVitalParameters service, and the
utilization (U ), queue length (QL), and waiting time (WT ) for the hardware
devices. Shaded entries of Table 1 highlight the violated performance require-
ments. For example, the RT of UpdateVitalParameters service is predicted to be
83.51 seconds, whereas it is required to be no more than 60 seconds.

Table 1. EHS- performance analysis results.

UpdateVital dispatcher DB-data DB-imgs
Parameters Host Host Host

RT [sec] 83.51 - - -
TH[reqs/sec] 3 - - -
U [%] - 0.18 0.93 0.32
QL[users] - 0.22 12.92 0.46
WT [sec] - 0.69 43.72 4.99

4.1 EHS: Automatic Trace Generation

Listing 1.3 reports one example of the set of statements that can be specified
by an engineer to express the relationships between software elements and per-
formance results in EHS, and it is provided as input to our SoPeTraceAnalyzer
tool [7]. Note that such statements represent one example of engineer under-
standing of the system, and other feasible specifications of traceability links can
be provided as well. This unavoidable gap, that recurs in any specification task,
requires a wider investigation to consolidate the definition of traceability links
and is left for future work.
{HWdbDataHost , HWwan} affectExactly

{UdbDataHost , QLdbDataHost , WTdbDataHost } ;
{SWuVP, SWdbData} affectAtLeast {RTuVP, THuVP} ;
{SWuVP, DYsetVP} affectAtMost

{RTuVP, THuVP, QLdbDataHost } ;
{SWdbData , DYsetVP} affectAtMost

{RTuVP, THuVP, QLdbDataHost } ;

Listing 1.3. EHS- Input to trace generation.

The weighted footprint graph (from input) for EHS has been automatically
obtained with the SoPeTraceAnalyzer tool [7], according to the provided specifi-
cation. In particular, RE nodes are all the performance results elements of inter-
est: response time and throughput of the UpdateVitalParameters service (RTuVP,
THuVP), utilization, queue length, and waiting time of the DB-dataHost device
(UdbDataHost, QLdbDataHost, WTdbDataHost). ME nodes are all the architec-
tural model elements involved in the UpdateVitalParameters service: software
operations and components (SWuVP, SWdbData), dynamic interactions (DYsetVP),
hardware nodes (HWdbDataHost), and communication networks (HWwan).
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4.2 EHS: Automatic Uncertainty Reduction

Performance antipatterns have been detected by means of our rule-based engine
[6], and we found the following two instances: (i) Concurrent Processing System
(CPS) antipattern, i.e., DB-dataHost hardware device is over-utilized; (ii) The
Ramp (TR) antipattern, i.e., the response time of the UpdateVitalParameters
service is quite unstable along simulation time.

Listing 1.4 reports the set of statements specifying the relationships between
software elements and performance results in EHS, as captured by performance
antipatterns. Such statements contribute to the input provided to our SoPe-
TraceAnalyzer tool [7].

CPS: {HWdbDataHost} affectExactly
{QLdbDataHost , UdbDataHost } ;

TR: {SWuVP} affectExactly {RTuVP, THuVP} ;

Listing 1.4. EHS- Antipattern-based rules.

Figure 5 reports the weighted footprint graph (after antipattern-based rules)
for EHS that has been automatically obtained with the SoPeTraceAnalyzer tool
[7], after elaborating the rules provided by performance antipatterns.

The weight of RE nodes contribute to indicate the severity of the corre-
sponding requirement’s violation by quantifying the percentage gap between the
requirement and the analysed index. Figure 5 shows that: RTuVP is 28% larger
than the defined requirement of 60 seconds, THuVP is 25% lower than the defined
requirement of 4 requests/sec, and UdbDataHost is 25% larger than the defined
requirement of 70%. In fact, the UpdateVitalParameters service has an average
response time of 83.51 sec, an average throughput of 3 requests/sec, and the
utilization of the DB-dataHost device is 93% (see Table 1).

{SWdbData,SWuVP}
SWuVP

SWdbData

DYsetVP

HWdbData
Host

RTuVP

THuVP

UdbDataHost

QLdbDataHost

WTdbDataHost

HWwan

{HWdbDataHost, 
HWwan}

{RTuVP, THuVP}

{RTuVP,THuVP,QLdbDataHost}

{RTuVP, THuVP}

{UdbDataHost, QLdbDataHost, 
WTdbDataHost}

RE ME

0

0

0.25

0.25

0.28

0.53

0.37

0

0.25

0

{UdbDataHost, QLdbDataHost}

{RTuVP,THuVP,QLdbDataHos}

{RTuVP,THuVP,QLdbDataHost}

{UdbDataHost, QLdbDataHost, 
WTdbDataHost}

{SWdbData,SWuVP}

{HWdbDataHost, 
HWwan}

{HWdbDataHost, 
HWwan}

Fig. 5. EHS- Weighted Footprint Graph (after Antipattern-based Rules).
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For sake of readability Figure 5 does not report the weights on the traceability
links connecting RE and ME elements, however their values contribute to the
weights of architectural model elements as follows. The SWuVP node is weighted
with the value 0.53 (calculated as 0.28 ∗ 1 + 0.25 ∗ 1) where the weight of 1 is
assigned to the two links connecting the SWuVP node with RTuVP and THuVP nodes,
respectively. Similarly, the HWdbDataHost node is weighted with the value 0.25
(calculated as 0.25 ∗ 1) where the weight of 1 is assigned to the link connecting
HWdbDataHost with the UdbDataHost node. The SWdbData node is weighted
with the value 0.37 (calculated as 0.28 ∗ 0.44 + 0.25 ∗ 1) where the weights of
0.44 and 1 are assigned by using the guilt-based approach we defined in our
previous work [11]. In particular, each model element is ranked on the basis of
how much it contributes to the performance index under analysis: we calculate
the index of the corresponding model element and we estimate how much it is
participating. In EHS the RT of the SWdbData component is equal to 46.14 sec
(i.e., 44% of RTuVP is provided by such component), whereas the TH is equal
to 3 requests/sec, hence it is fully involved in the TH requirement. We recall
that the UpdateVitalParameters service has an average response time of 83.51
sec and throughput of 3 requests/sec (see Table 1).

Table 2. EHS- performance analysis results while refactoring software model elements.

(a) SWuVP refactoring.

UpdateVital dispatcher DB-data DB-imgs
Parameters Host Host Host

RT [sec] 35.75 - - -
TH[reqs/sec] 6 - - -
U [%] - 0.35 0.51 0.17
QL[users] - 0.56 1.05 0.2
WT [sec] - 0.87 1.63 4.37

(b) SWdbData refactoring.

UpdateVital dispatcher DB-data DB-imgs
Parameters Host Host Host

RT [sec] 41.23 - - -
TH[reqs/sec] 5 - - -
U [%] - 0.18 0.77 0.04
QL[users] - 0.22 3.52 0.03
WT [sec] - 0.7 11.3 3.72

(c) HWdbDataHost refactoring.

UpdateVital dispatcher DB-data DB-imgs
Parameters Host Host Host

RT [sec] 82.9 - - -
TH[reqs/sec] 3 - - -
U [%] - 0.22 0.36 0.32
QL[users] - 0.22 0.58 0.46
WT [sec] - 0.71 1.82 48.3
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RE and ME nodes related to undefined and/or inviolate requirements are
weighted with a value equal to zero (e.g., QLdbDataHost, HWwan).

Several strategies can be devised to use the weighted footprint graph:
(i) RE-based traceability, i.e., looking at RE nodes only it is possible to identify
the ME that most likely contribute to each requirement violation by selecting the
traceability link with the highest weight; (ii) ME-based traceability, i.e., looking
at ME nodes only it is possible to identify the most critical causes of performance
flaws by providing a link coverage for all the violated requirements.

We performed a preliminary validation of these traceability strategies while
separately refactoring all the model elements with a consistent weight.

Table 2 shows the performance analysis results we obtained: Table 2(a)
demonstrates that the SWuVP refactoring is actually beneficial to solve perfor-
mance flaws, since all the stated requirements have been fulfilled; Table 2(b)
shows that refactoring the SWdbData element is beneficial for the requirements
to which it is strictly connected (see Figure 5) but there is still one requirement
that is not satisfied and the SWuVP refactoring outperforms this refactoring; Table
2(c) finally reports that refactoring the HWdbDataHost element is beneficial only
for the requirement to which it is strictly connected (see Figure 5).

We are aware that this is far from being a rigorous proof of the weighted
footprint graph output soundness, but first validation results seem promising to
track a direction for this goal.

5 Discussion

Besides inheriting all limitations of the underlying software performance engi-
neering and model-driven traceability techniques [27,28], our approach exhibits
the following threats to validity:

- Correctness: input is given by the engineer that defines uncertainty con-
structs to the level of detail she or he is comfortable with. This means that
not every input combination is valid and it becomes increasingly unlikely
that the input remains consistent, especially if the input is provided by dif-
ferent engineers.

- Granularity: it is difficult to establish at what level of granularity traces
between model and results should be generated. Performance indices can be
estimated at different levels of granularity, e.g. the response time index can
be evaluated at the level of a cpu device, or at the level of a service that
spans on different devices. Then, the engineer has the choice to establish
traceability between the model elements and it is unrealistic to keep under
control all performance results at all levels of abstraction.
An important aspect of future work is to provide correctness checks based

on the consistency of the input, in fact consistency does not imply correctness.
We can identify the input that is responsible for incorrectness and granularity
problems, and provide support to engineers for resolving the detected issues.

Note that our approach makes use of performance antipatterns to deduce
the logical consequences between the architectural elements and analysis results,
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however it does not a priori guarantee uncertainty reduction. As future work, we
plan to integrate other approaches to derive model-to-results traceability links,
e.g. bottleneck analysis [29] and model optimization methods [30] can be used
to improve the uncertainty reduction.

6 Conclusion

This paper presents a new approach to automate the traceability between archi-
tectural model elements and performance analysis results, thus to support soft-
ware architects in the identification of the causes that most likely contribute
to the violation of performance requirements. To this end, we developed a tool
(SoPeTraceAnalyzer) that is able to interpret a language capable of interpreting
uncertainties while capturing model-to-results traceability links. The approach
is illustrated by means of a case study in the e-health domain.

The benefit of the tool is that it allows to automatically visualize the depen-
dencies between modelling elements in architectural models (e.g., software com-
ponents) and performance analysis results (e.g., response time, throughput, and
utilization). As input the tool takes on the one hand possible influences already
known to the domain expert, and on the other hand performance antipatterns
which express further such dependencies. The detection of performance antipat-
terns is used to make the domain expert dependencies more precise, e.g., by
ruling out certain influences.

As future work we intend to apply our approach to other case studies, possibly
coming from industrial experiences and different domains. This wider experimen-
tation will allow us to deeply investigate the usefulness of performance antipat-
terns to reduce traceability uncertainty, thus studying the effectiveness and the
scalability of our approach.
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